restart "LxxManager", a service.
in powershell
$manifest = (Get-AppxPackage Microsoft.WindowsStore).InstallLocation + '\AppxManifest.xml' ; Add-AppxPackage -DisableDevelopmentMode -Register $manifest
url: https://github.com/tensorflow/tensorflow/issues/30227
https://github.com/tensorflow/tensorflow/issues/30227#issuecomment-506783788
Searching deeply, I found that the first timestep is also used to determine the cell output shape and its dtype.
(py3-tf2-gpu) sephiroce@bike:/usr/local/cuda/samples/5_Simulations/nbody$ ./nbody -benchmark -numbodies=2560000 -device=0
Run "nbody -benchmark [-numbodies=
-fullscreen (run n-body simulation in fullscreen mode)
-fp64 (use double precision floating point values for simulation)
-hostmem (stores simulation data in host memory)
-benchmark (run benchmark to measure performance)
-numbodies=
-device=
-numdevices= (where i=(number of CUDA devices > 0) to use for simulation)
-compare (compares simulation results running once on the default GPU and once on the CPU)
-cpu (run n-body simulation on the CPU)
-tipsy=
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
> Windowed mode
> Simulation data stored in video memory
> Single precision floating point simulation
> 1 Devices used for simulation
gpuDeviceInit() CUDA Device [0]: "Ampere
> Compute 8.6 CUDA device: [GeForce RTX 3090]
number of bodies = 2560000
2560000 bodies, total time for 10 iterations: 69005.547 ms
= 949.721 billion interactions per second
= 18994.415 single-precision GFLOP/s at 20 flops per interaction